99 research outputs found

    Protein secondary structure: Entropy, correlations and prediction

    Get PDF
    Is protein secondary structure primarily determined by local interactions between residues closely spaced along the amino acid backbone, or by non-local tertiary interactions? To answer this question we have measured the entropy densities of primary structure and secondary structure sequences, and the local inter-sequence mutual information density. We find that the important inter-sequence interactions are short ranged, that correlations between neighboring amino acids are essentially uninformative, and that only 1/4 of the total information needed to determine the secondary structure is available from local inter-sequence correlations. Since the remaining information must come from non-local interactions, this observation supports the view that the majority of most proteins fold via a cooperative process where secondary and tertiary structure form concurrently. To provide a more direct comparison to existing secondary structure prediction methods, we construct a simple hidden Markov model (HMM) of the sequences. This HMM achieves a prediction accuracy comparable to other single sequence secondary structure prediction algorithms, and can extract almost all of the inter-sequence mutual information. This suggests that these algorithms are almost optimal, and that we should not expect a dramatic improvement in prediction accuracy. However, local correlations between secondary and primary structure are probably of under-appreciated importance in many tertiary structure prediction methods, such as threading.Comment: 8 pages, 5 figure

    Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems

    Full text link
    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently-developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.Comment: 15 pages, 2 figures, and 2 table

    Bayesian estimates of free energies from nonequilibrium work data in the presence of instrument noise

    Get PDF
    The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to non-equilibrium measurements of the work. These relations extend to single-molecule experiments that have probed the finite-time thermodynamics of proteins and nucleic acids. The effects of experimental error and instrument noise have not previously been considered. Here, we present a Bayesian formalism for estimating free-energy changes from non-equilibrium work measurements that compensates for instrument noise and combines data from multiple driving protocols. We reanalyze a recent set of experiments in which a single RNA hairpin is unfolded and refolded using optical tweezers at three different rates. Interestingly, the fastest and farthest-from-equilibrium measurements contain the least instrumental noise, and therefore provide a more accurate estimate of the free energies than a few slow, more noisy, near-equilibrium measurements. The methods we propose here will extend the scope of single-molecule experiments; they can be used in the analysis of data from measurements with AFM, optical, and magnetic tweezers.Comment: 8 page
    • …
    corecore